Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Thorac Oncol ; 18(11): 1504-1523, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37437883

RESUMEN

INTRODUCTION: Lung cancer remains the deadliest cancer in the world, and lung cancer survival is heavily dependent on tumor stage at the time of detection. Low-dose computed tomography screening can reduce mortality; however, annual screening is limited by low adherence in the United States of America and still not broadly implemented in Europe. As a result, less than 10% of lung cancers are detected through existing programs. Thus, there is a great need for additional screening tests, such as a blood test, that could be deployed in the primary care setting. METHODS: We prospectively recruited 1384 individuals meeting the National Lung Screening Trial demographic eligibility criteria for lung cancer and collected stabilized whole blood to enable the pipetting-free collection of material, thus minimizing preanalytical noise. Ultra-deep small RNA sequencing (20 million reads per sample) was performed with the addition of a method to remove highly abundant erythroid RNAs, and thus open bandwidth for the detection of less abundant species originating from the plasma or the immune cellular compartment. We used 100 random data splits to train and evaluate an ensemble of logistic regression classifiers using small RNA expression of 943 individuals, discovered an 18-small RNA feature consensus signature (miLung), and validated this signature in an independent cohort (441 individuals). Blood cell sorting and tumor tissue sequencing were performed to deconvolve small RNAs into their source of origin. RESULTS: We generated diagnostic models and report a median receiver-operating characteristic area under the curve of 0.86 (95% confidence interval [CI]: 0.84-0.86) in the discovery cohort and generalized performance of 0.83 in the validation cohort. Diagnostic performance increased in a stage-dependent manner ranging from 0.73 (95% CI: 0.71-0.76) for stage I to 0.90 (95% CI: 0.89-0.90) for stage IV in the discovery cohort and from 0.76 to 0.86 in the validation cohort. We identified a tumor-shed, plasma-bound ribosomal RNA fragment of the L1 stalk as a dominant predictor of lung cancer. The fragment is decreased after surgery with curative intent. In additional experiments, results of dried blood spot collection and sequencing revealed that small RNA analysis could potentially be conducted through home sampling. CONCLUSIONS: These data suggest the potential of a small RNA-based blood test as a viable alternative to low-dose computed tomography screening for early detection of smoking-associated lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Detección Precoz del Cáncer/métodos , Pulmón/patología , Fumar , ARN
2.
J Med Genet ; 59(3): 253-261, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33579810

RESUMEN

INTRODUCTION: Kagami-Ogata syndrome (KOS14) and Temple syndrome (TS14) are two disorders associated with reciprocal alterations within the chr14q32 imprinted domain. Here, we present a work-up strategy for preimplantation genetic testing (PGT) to avoid the transmission of a causative micro-deletion. METHODS: We analysed DNA from the KOS14 index case and parents using methylation-sensitive ligation-mediated probe amplification and methylation pyrosequencing. The extent of the deletion was mapped using SNP arrays. PGT was performed in trophectoderm samples in order to identify unaffected embryos. Samples were amplified using multiple displacement amplification, followed by genome-wide SNP genotyping to determine the at-risk haplotype and next-generation sequencing to determine aneuploidies. RESULTS: A fully methylated pattern at the normally paternally methylated IG-DMR and MEG3 DMR in the KOS14 proband, accompanied by an unmethylated profile in the TS14 mother was consistent with maternal and paternal transmission of a deletion, respectively. Further analysis revealed a 108 kb deletion in both cases. The inheritance of the deletion on different parental alleles was consistent with the opposing phenotypes. In vitro fertilisation with intracytoplasmatic sperm injection and PGT were used to screen for deletion status and to transfer an unaffected embryo in this couple. A single euploid-unaffected embryo was identified resulting in a healthy baby born. DISCUSSION: We identify a microdeletion responsible for multigeneration KOS14 and TS14 within a single family where carriers have a 50% risk of transmitting the deletion to their offspring. We show that PGT can successfully be offered to couples with IDs caused by genetic anomalies.


Asunto(s)
Anomalías Múltiples , Diagnóstico Preimplantación , Anomalías Múltiples/genética , Aneuploidia , Cromosomas Humanos Par 14 , Femenino , Pruebas Genéticas/métodos , Humanos , Embarazo , Disomía Uniparental
3.
Epigenetics ; 15(12): 1386-1395, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32573317

RESUMEN

Although more and more children are born by Assisted Reproductive Technologies (ART), ART safety has not fully been demonstrated. Notably, ART could disturb the delicate step of implantation, and trigger placenta-related adverse outcomes with potential long-term effects, through disrupted epigenetic regulation. We have previously demonstrated that placental DNA methylation was significantly lower after IVF/ICSI than following natural conception at two differentially methylated regions (DMRs) associated with imprinted genes (IGs): H19/IGF2 and KCNQ1OT1. As histone modifications are critical for placental physiology, the aim of this study was to profile permissive and repressive histone marks in placenta biopsies to reveal a better understanding of the epigenetic changes in the context of ART. Utilizing chromatin immunoprecipitation (ChIP) coupled with quantitative PCR, permissive (H3K4me3, H3K4me2, and H3K9ac) and repressive (H3K9me3 and H3K9me2) post-translational histone modifications were quantified. The analyses revealed a significantly higher quantity of H3K4me2 precipitation in the IVF/ICSI group than in the natural conception group for H19/IGF2 and KCNQ1OT1 DMRs (P = 0.016 and 0.003, respectively). Conversely, the quantity of both repressive marks at H19/IGF2 and SNURF DMRs was significantly lower in the IVF/ICSI group than in the natural conception group (P = 0.011 and 0.027 for H19/IGF2; and P = 0.010 and 0.035 for SNURF). These novel findings highlight that DNA hypomethylation at imprinted DMRs following ART is linked with increased permissive/decreased repressive histone marks, altogether promoting a more permissive chromatin conformation. This concomitant change in epigenetic state at IGs at birth might be an important developmental event because of ART manipulations.


Asunto(s)
Metilación de ADN , Impresión Genómica , Código de Histonas , Placenta/metabolismo , Inyecciones de Esperma Intracitoplasmáticas/efectos adversos , Femenino , Histonas/química , Histonas/metabolismo , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Masculino , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Embarazo
4.
Sci Rep ; 9(1): 948, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700782

RESUMEN

Mouse embryonic stem cells (mESCs) are pluripotent and can differentiate into cells belonging to the three germ layers of the embryo. However, mESC pluripotency and genome stability can be compromised in prolonged in vitro culture conditions. Several factors control mESC pluripotency, including Wnt/ß-catenin signaling pathway, which is essential for mESC differentiation and proliferation. Here we show that the activity of the Wnt/ß-catenin signaling pathway safeguards normal DNA methylation of mESCs. The activity of the pathway is progressively silenced during passages in culture and this results into a loss of the DNA methylation at many imprinting control regions (ICRs), loss of recruitment of chromatin repressors, and activation of retrotransposons, resulting into impaired mESC differentiation. Accordingly, sustained Wnt/ß-catenin signaling maintains normal ICR methylation and mESC homeostasis and is a key regulator of genome stability.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Epigénesis Genética , Homeostasis , Células Madre Embrionarias de Ratones/metabolismo , Vía de Señalización Wnt , Animales , Línea Celular , Metilación de ADN , Ratones , Células Madre Embrionarias de Ratones/citología
5.
Clin Epigenetics ; 11(1): 35, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808399

RESUMEN

BACKGROUND: Genome-wide studies have begun to link subtle variations in both allelic DNA methylation and parent-of-origin genetic effects with early development. Numerous reports have highlighted that the placenta plays a critical role in coordinating fetal growth, with many key functions regulated by genomic imprinting. With the recent description of wide-spread polymorphic placenta-specific imprinting, the molecular mechanisms leading to this curious polymorphic epigenetic phenomenon is unknown, as is their involvement in pregnancies complications. RESULTS: Profiling of 35 ubiquitous and 112 placenta-specific imprinted differentially methylated regions (DMRs) using high-density methylation arrays and pyrosequencing revealed isolated aberrant methylation at ubiquitous DMRs as well as abundant hypomethylation at placenta-specific DMRs. Analysis of the underlying chromatin state revealed that the polymorphic nature is not only evident at the level of allelic methylation, but DMRs can also adopt an unusual epigenetic signature where the underlying histones are biallelically enrichment of H3K4 methylation, a modification normally mutually exclusive with DNA methylation. Quantitative expression analysis in placenta identified two genes, GPR1-AS1 and ZDBF2, that were differentially expressed between IUGRs and control samples after adjusting for clinical factors, revealing coordinated deregulation at the chromosome 2q33 imprinted locus. CONCLUSIONS: DNA methylation is less stable at placenta-specific imprinted DMRs compared to ubiquitous DMRs and contributes to privileged state of the placenta epigenome. IUGR-associated expression differences were identified for several imprinted transcripts independent of allelic methylation. Further work is required to determine if these differences are the cause IUGR or reflect unique adaption by the placenta to developmental stresses.


Asunto(s)
Metilación de ADN , Retardo del Crecimiento Fetal/genética , Perfilación de la Expresión Génica/métodos , Placenta/química , Cromosomas Humanos Par 2/genética , Islas de CpG , Proteínas de Unión al ADN/genética , Femenino , Retardo del Crecimiento Fetal/metabolismo , Regulación de la Expresión Génica , Impresión Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histonas/metabolismo , Humanos , Linaje , Embarazo
6.
Epigenomics ; 10(7): 941-954, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29962238

RESUMEN

AIM: This study aimed to establish a catalog of probes corresponding to imprinted differentially methylated regions (DMRs) on the Infinium HumanMethylationEPIC BeadChip. MATERIALS & METHODS: Reciprocal uniparental diploidies with low normal biparental mosaic contribution, together with normal diploid controls, were subjected to EPIC BeadChip hybridization. The methylation profiles were assessed for imprinted differential methylation. Top candidates were validated using locus-specific PCR-based assays. RESULTS: Seven hundred and eighty-nine CpG probes coincided with 50 known imprinted DMRs and 467 CpG probes corresponding to 124 novel imprinted DMR candidates were identified. Validation led to identification of several subtle DMRs within known imprinted domains as well as novel maternally methylated regions associated with PTCHD3 and JAKMIP1. CONCLUSION: Our comprehensive list of bona fide-imprinted DMR probes will simplify and facilitate methylation profiling of individuals with imprinting disorders and is applicable to other diseases in which aberrant imprinting has been implicated, such as cancer and fetal growth.


Asunto(s)
Metilación de ADN , Genoma Humano , Impresión Genómica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Islas de CpG , Sondas de ADN/genética , Estudio de Asociación del Genoma Completo , Voluntarios Sanos , Humanos
7.
Epigenetics ; 13(2): 182-191, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28678681

RESUMEN

DNA methylation (5-methylcytosine, 5 mC) is involved in many cellular processes and is an epigenetic mechanism primarily associated with transcriptional repression. The recent discovery that 5 mC can be oxidized to 5-hydromethylcytosine (5hmC) by TET proteins has revealed the "sixth base" of DNA and provides additional complexity to what was originally thought to be a stable repressive mark. However, our knowledge of the genome-wide distribution of 5hmC in different tissues is currently limited. Here, we sought to define loci enriched for 5hmC in the placenta genome by combining oxidative bisulphite (oxBS) treatment with high-density Illumina Infinium HumanMethylation450 methylation arrays and to compare our results with those obtained in brain. Despite identifying over 17,000 high-confidence CpG sites with consistent 5hmC enrichment, the distribution of this modification in placenta is relatively sparse when compared to cerebellum and frontal cortex. Supported by validation using allelic T4 ß-glucosyltransferase assays we identify 5hmC at numerous imprinted loci, often overlapping regions associated with parent-of-origin allelic 5 mC in both placenta and brain samples. Furthermore, we observe tissue-specific monoallelic enrichment of 5hmC overlapping large clusters of imprinted snoRNAs-miRNAs processed from long noncoding RNAs (lncRNAs) within the DLK1-DIO3 cluster on chromosome 14 and SNRPN-UBE3A domain on chromosome 15. Enrichment is observed solely on the transcribed alleles suggesting 5hmC is positively associated with transcription at these loci. Our study provides an extensive description of the 5hmC/5 mC landscape in placenta with our data available at www.humanimprints.net , which represents the most comprehensive resource for exploring the epigenetic profiles associated with human imprinted genes.


Asunto(s)
5-Metilcitosina/análogos & derivados , Encéfalo/metabolismo , Metilación de ADN , Sitios Genéticos , Impresión Genómica , Placenta/metabolismo , 5-Metilcitosina/metabolismo , Femenino , Humanos , Embarazo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Nucleares snRNP/genética , Proteínas Nucleares snRNP/metabolismo
8.
Nat Commun ; 8(1): 467, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28883545

RESUMEN

It has been postulated that imprinting aberrations are common in tumors. To understand the role of imprinting in cancer, we have characterized copy-number and methylation in over 280 cancer cell lines and confirm our observations in primary tumors. Imprinted differentially methylated regions (DMRs) regulate parent-of-origin monoallelic expression of neighboring transcripts in cis. Unlike single-copy CpG islands that may be prone to hypermethylation, imprinted DMRs can either loose or gain methylation during tumorigenesis. Here, we show that methylation profiles at imprinted DMRs often not represent genuine epigenetic changes but simply the accumulation of underlying copy-number aberrations (CNAs), which is independent of the genome methylation state inferred from cancer susceptible loci. Our results reveal that CNAs also influence allelic expression as loci with copy-number neutral loss-of-heterozygosity or amplifications may be expressed from the appropriate parental chromosomes, which is indicative of maintained imprinting, although not observed as a single expression foci by RNA FISH.Altered genomic imprinting is frequently reported in cancer. Here, the authors analyze copy number and methylation in cancer cell lines and primary tumors to show that imprinted methylation profiles represent the accumulation of copy number alteration, rather than epigenetic alterations.


Asunto(s)
Epigénesis Genética , Dosificación de Gen , Impresión Genómica , Neoplasias/genética , Alelos , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Sitios Genéticos , Humanos
9.
Reproduction ; 154(6): R161-R170, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28916717

RESUMEN

Before activation of the embryonic genome, the oocyte provides many of the RNAs and proteins required for the epigenetic reprogramming and the transition to a totipotent state. Targeted disruption of a subset of oocyte-derived transcripts in mice results in early embryonic lethality and cleavage-stage embryonic arrest as highlighted by the members of the subcortical maternal complex (SCMC). Maternal-effect recessive mutations of NLRP7, KHDC3L and NLRP5 in humans are associated with variable reproductive outcomes, biparental hydatidiform moles (BiHM) and widespread multi-locus imprinting disturbances. The precise mechanism of action of these genes is unknown, but the maternal-effect phenomenon suggests a function during early pre-implantation development, while biochemical and genetic studies implement them as SCMC members or interacting partners. In this review article, we discuss the role of the NLRP family members and the SCMC proteins in the establishment of genomic imprints and post-zygotic methylation maintenance, the recent advances made in the understanding of the biology involved in BiHM formation and the wider roles of the SCMC in mammalian reproduction.


Asunto(s)
Impresión Genómica , Complejos Multiproteicos/genética , Oocitos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Metilación de ADN , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Mola Hidatiforme/genética , Mola Hidatiforme/metabolismo , Mola Hidatiforme/patología , Ratones , Proteínas Mitocondriales , Complejos Multiproteicos/metabolismo , Mutación , Proteínas Nucleares , Embarazo , Proteínas/genética , Proteínas/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patología
10.
PLoS Genet ; 12(11): e1006427, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27835649

RESUMEN

Thousands of regions in gametes have opposing methylation profiles that are largely resolved during the post-fertilization epigenetic reprogramming. However some specific sequences associated with imprinted loci survive this demethylation process. Here we present the data describing the fate of germline-derived methylation in humans. With the exception of a few known paternally methylated germline differentially methylated regions (DMRs) associated with known imprinted domains, we demonstrate that sperm-derived methylation is reprogrammed by the blastocyst stage of development. In contrast a large number of oocyte-derived methylation differences survive to the blastocyst stage and uniquely persist as transiently methylated DMRs only in the placenta. Furthermore, we demonstrate that this phenomenon is exclusive to primates, since no placenta-specific maternal methylation was observed in mouse. Utilizing single cell RNA-seq datasets from human preimplantation embryos we show that following embryonic genome activation the maternally methylated transient DMRs can orchestrate imprinted expression. However despite showing widespread imprinted expression of genes in placenta, allele-specific transcriptional profiling revealed that not all placenta-specific DMRs coordinate imprinted expression and that this maternal methylation may be absent in a minority of samples, suggestive of polymorphic imprinted methylation.


Asunto(s)
Metilación de ADN/genética , Impresión Genómica/genética , Células Germinativas/metabolismo , Oocitos/metabolismo , Animales , Blastocisto/metabolismo , Islas de CpG/genética , Femenino , Humanos , Masculino , Ratones , Placenta/metabolismo , Embarazo , Primates/genética , Primates/crecimiento & desarrollo , Espermatozoides/metabolismo
11.
Trends Genet ; 32(7): 444-455, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27235113

RESUMEN

Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs).


Asunto(s)
Metilación de ADN/genética , Impresión Genómica/genética , Código de Histonas/genética , Genoma Humano , Células Germinativas , Humanos , Mutación/genética
12.
PLoS Genet ; 11(11): e1005644, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26544189

RESUMEN

Familial recurrent hydatidiform mole (RHM) is a maternal-effect autosomal recessive disorder usually associated with mutations of the NLRP7 gene. It is characterized by HM with excessive trophoblastic proliferation, which mimics the appearance of androgenetic molar conceptuses despite their diploid biparental constitution. It has been proposed that the phenotypes of both types of mole are associated with aberrant genomic imprinting. However no systematic analyses for imprinting defects have been reported. Here, we present the genome-wide methylation profiles of both spontaneous androgenetic and biparental NLRP7 defective molar tissues. We observe total paternalization of all ubiquitous and placenta-specific differentially methylated regions (DMRs) in four androgenetic moles; namely gain of methylation at paternally methylated loci and absence of methylation at maternally methylated regions. The methylation defects observed in five RHM biopsies from NLRP7 defective patients are restricted to lack-of-methylation at maternal DMRs. Surprisingly RHMs from two sisters with the same missense mutations, as well as consecutive RHMs from one affected female show subtle allelic methylation differences, suggesting inter-RHM variation. These epigenotypes are consistent with NLRP7 being a maternal-effect gene and involved in imprint acquisition in the oocyte. In addition, bioinformatic screening of the resulting methylation datasets identified over sixty loci with methylation profiles consistent with imprinting in the placenta, of which we confirm 22 as novel maternally methylated loci. These observations strongly suggest that the molar phenotypes are due to defective placenta-specific imprinting and over-expression of paternally expressed transcripts, highlighting that maternal-effect mutations of NLRP7 are associated with the most severe form of multi-locus imprinting defects in humans.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Metilación de ADN , Impresión Genómica , Mola Hidatiforme/genética , Mutación , Placenta/metabolismo , Alelos , Femenino , Humanos , Embarazo
13.
Epigenetics ; 10(6): 516-25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25933062

RESUMEN

DNA methylation is one of the main epigenetic mechanisms that can regulate gene expression and is an important means for creating phenotypic variation. In the present study, we performed methylation profiling of 2 candidate genes for personality traits, namely DRD4 and SERT, in the great tit Parus major to ascertain whether personality traits and behavior within different habitats have evolved with the aid of epigenetic variation. We applied bisulphite PCR and strand-specific sequencing to determine the methylation profile of the CpG dinucleotides in the DRD4 and SERT promoters and also in the CpG island overlapping DRD4 exon 3. Furthermore, we performed pyrosequencing to quantify the total methylation levels at each CpG location. Our results indicated that methylation was ∼1-4% higher in urban than in forest birds, for all loci and tissues analyzed, suggesting that this epigenetic modification is influenced by environmental conditions. Screening of genomic DNA sequence revealed that the SERT promoter is CpG poor region. The methylation at a single CpG dinucleotide located 288 bp from the transcription start site was related to exploration score in urban birds. In addition, the genotypes of the SERT polymorphism SNP234 located within the minimal promoter were significantly correlated with novelty seeking behavior in captivity, with the allele increasing this behavior being more frequent in urban birds. As a conclusion, it seems that both genetic and methylation variability of the SERT gene have an important role in shaping personality traits in great tits, whereas genetic and methylation variation at the DRD4 gene is not strongly involved in behavior and personality traits.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Conducta Exploratoria , Receptores de Dopamina D4/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Alelos , Animales , Islas de CpG/genética , Exones , Genotipo , Passeriformes/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas
14.
Am J Med Genet B Neuropsychiatr Genet ; 165B(6): 472-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24980697

RESUMEN

The phenotype overlap between autism spectrum disorders (ASD) & intellectual disabilities (ID) is mirrored at the genetic level, with common genes being reported mutated in variety of developmental disabilities. However despite widespread genetic screening for mutations, in approximately 40-60% of childhood developmental disorders the genetic cause remains unknown. Several genome-wide linkage screens in ASD have identified a locus mapping to distal 8q. We have recently identified a novel brain-specific imprinted cluster at this location, which contains the reciprocally expressed maternal KCNK9 and paternally expressed non-coding PEG13 transcripts, the latter located within an intron of TRAPPC9. Interestingly, mutations of KCNK9 and TRAPPC9 have been reported in Birk-Barel mental retardation and non-syndromic familial forms of ID, respectively. Here, we report a genetic screen for KCNK9 coding mutations and potential epigenetic aberrations that could result in deregulated imprinting in a cohort of 120 ID, 86 ASD and 86 Tourette syndrome patients. Fifteen of the ID patients had clinical characteristics overlapping with Birk-Barel syndrome. Sequencing of the two coding exons of KCNK9 failed to identify pathologic mutations, with only one variant, rs2615374, being present with allele frequencies similar to those described in dbSNP database. DNA methylation profiling of the KCNK9 and TRAPPC9 promoters, the maternally methylated PEG13 DMR and a long-range enhancer region were normal in all patients. Our findings suggest that mutations of KCNK9 or epigenetic disturbances within the PEG13 imprinted cluster do not significantly contribute to the cause of the developmental disabilities tested in this study.


Asunto(s)
Trastorno Autístico/genética , Cromosomas Humanos Par 8/genética , Metilación de ADN/genética , Pruebas Genéticas , Impresión Genómica/genética , Discapacidad Intelectual/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Síndrome de Tourette/genética , Epigénesis Genética , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad , Humanos , Mutación , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...